Sensory Transduction Channel Subunits, tax-4 and tax-2, Modify Presynaptic Molecular Architecture in C. elegans

نویسندگان

  • Andrew B. Hellman
  • Kang Shen
چکیده

During development, neural activity is important for forming proper connections in neural networks. The effect of activity on the gross morphology and synaptic strength of neurons has been well documented, but little is known about how activity affects different molecular components during development. Here, we examine the localization of four fluorescently-tagged presynaptic proteins, RAB-3, SNG-1/synaptogyrin, SYD-2/Liprin-α, and SAD-1/SAD kinase, in the C. elegans thermosensory neuron AFD. We show that tax-4 and tax-2, two genes that encode the cyclic nucleotide-gated channel necessary for sensory transduction in AFD, disrupt the localization of all four proteins. In wild-type animals, the synaptic vesicle (SV) markers RAB-3 and SNG-1 and the active zone markers SYD-2 and SAD-1 localize in a stereotyped, punctate pattern in the AFD axon. In tax-4 and tax-2 mutants, SV and SYD-2 puncta are more numerous and less intense. Interestingly, SAD-1 puncta are also less intense but do not increase in number. The change in puncta number can be rescued cell-autonomously in AFD. These results suggest that sensory transduction genes tax-4 and tax-2 are necessary for the proper assembly of presynapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure.

The tax-2 and tax-4 genes of C. elegans encode two subunits of a cyclic nucleotide-gated channel that is required for chemosensation, thermosensation and normal axon outgrowth of some sensory neurons. Here we show that, in tax-2 and tax-4 mutants, young larvae have superficially normal axons, but axon outgrowth resumes in inappropriate regions in late larval stages. Using a temperature-sensitiv...

متن کامل

Defining specificity determinants of cGMP mediated gustatory sensory transduction in Caenorhabditis elegans.

Cyclic guanosine monophosphate (cGMP) is a key secondary messenger used in signal transduction in various types of sensory neurons. The importance of cGMP in the ASE gustatory receptor neurons of the nematode Caenorhabditis elegans was deduced by the observation that multiple receptor-type guanylyl cyclases (rGCs), encoded by the gcy genes, and two presently known cyclic nucleotide-gated ion ch...

متن کامل

Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans.

Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and l...

متن کامل

Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans

The C. elegans tax-4 mutants are abnormal in multiple sensory behaviors: they fail to respond to temperature or to water-soluble or volatile chemical attractants. We show that the predicted tax-4 gene product is highly homologous to vertebrate cyclic nucleotide-gated channels. Tax-4 protein expressed in cultured cells functions as a cyclic nucleotide-gated channel. The green fluorescent protein...

متن کامل

Acute carbon dioxide avoidance in Caenorhabditis elegans.

Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011